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Key Points:

e Channel geometry estimation is essential for hydrological, geomorphological, and
ecological modeling and analysis.

e A suite of data-driven models is developed to estimate channel width and depth under
bankfull and mean-flow conditions.

e The best models are applied for reach-scale estimation of channel geometry for the

contiguous United States.
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Abstract

Widely adopted models for estimating channel geometry attributes rely on simplistic
power-law (hydraulic geometry) equations. This study presents a new generation of channel
geometry models based on a hybrid approach combining traditional statistical methods (Multi-
Linear Regression (MLR)) and advanced tree-based Machine Learning (ML) algorithms
(Random Forest Regression (RFR) and eXtreme Gradient Boosting Regression (XGBR)),
utilizing novel datasets. To achieve this, a new preprocessing method was applied to refine an
extensive observational dataset, namely the HY DRoacoustic dataset supporting Surface Water
Oceanographic Topography (HYDRoSWOT). This process improved data quality and identified
observations representing bankfull and mean-flow conditions. A compiled dataset, combining the
preprocessed dataset with datasets containing additional catchment attributes like the National
Hydrography Dataset Plus (NHDplusv2.1), was then used to train a suite of models to predict
channel width and depth under bankfull and mean-flow conditions. The analysis shows that tree-
based ML algorithms outperform traditional statistical methods in accuracy and handling the data
but face limitations in prediction capabilities for streams with characteristics outside the training
range. Consequently, a hybrid method was selected, combining XGBR for streams within the
dataset range and MLR for those outside it. Two tiers of models were developed for each
attribute using discharges derived from distinct sources (HYDRoSWOT and NHDPIlusV2.1,
respectively), where the second tier of models offers applicability across approximately 2.6
million streams within NHDplusv2.1. Comprehensive independent evaluations are conducted to
assess the capability of the developed models in providing stream/reach-averaged (rather than at-

a-station) predictions for locations outside the training and testing datasets.

1. Introduction

Rivers, dynamic features of the earth's natural system, play a significant role in the lives
of humans, flora, and fauna (Gleason, 2015; Wilby & Gibert, 1996). Estimating river hydraulic
characteristics, such as width and depth, is crucial in analyzing river channel geomorphology
(Harrelson et al., 1994; Monegaglia & Tubino, 2019; Naito & Parker, 2020; Zhou et al., 2022),
the stream’s ecology and water quality state (Walling & Webb, 1975; Rice et al., 2001; Thoms,
2003; Sobotka & Phelps, 2017), river management (Rosgen, 1994; Andrews & Nankervis, 1995;
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Clerici et al., 2015), and flood forecasting and management (Orlandini & Rosso, 1998; Neal et
al., 2015; Dey et al., 2022; Heldmyer et al., 2022).

Hydraulic geometry is critical in refining hydrological models, particularly within
operational forecasting frameworks such as the National Oceanic and Atmospheric
Administration (NOAA) National Water Model (NWM). These models often oversimplify key
attributes, which limits their ability to accurately capture the intricate dynamics and routing of
natural water systems. Consequently, this simplification undermines the accuracy of streamflow
predictions. The NOAA Office of Water Prediction (OWP) relies on NWM-forecasted
streamflow to produce Flood Inundation Mapping (FIM) via the Height Above Nearest Drainage
(HAND) method. Additionally, models of channel geometry can be utilized to develop a refined
Digital Elevation Model (DEM) that accurately represents both topography and the unique
characteristics of river channels. This burned DEM can further enhance the accuracy of HAND-

FIM predictions.

Leopold and Maddock Jr (1953) proposed a set of power-law equations to predict the
mean hydraulic geometry attributes based on mean-flow discharge. This set of equations can be
employed to predict bankfull hydraulic geometry attributes by replacing bankfull flow discharge
with the previously considered mean-flow discharge (Leopold et al., 1964). Bankfull channel
geometry is frequently used in hydrological modeling and analysis (Wolman & Leopold, 1957;
Leopold et al., 1964; Williams, 1978; Radecki-Pawlik, 2002; Navratil et al., 2006; Charlton,
2007; Naito & Parker, 2019; Keast & Ellison, 2022). A similar methodology, known as Regional
Hydraulic Geometry Curves (RHGC), was proposed by Dunne and Leopold (1978) to estimate
the bankfull hydraulic attributes based on drainage area. This approach effectively resolved the
challenge of restricting the utilization of hydraulic geometry solely to rivers and streams with
recorded flow discharge by substituting flow discharge with drainage area (Ames et al., 2009).
However, these equations were not widely utilized due to the lack of available measured channel
dimensions necessary for their development over extensive geographic areas (Bieger et al.,
2015). To address this limitation, various studies proposed to localize the regional curves for
different regions across the United States, such as New York state (Mulvihill & Baldigo, 2012),
Pennsylvania, and selected areas of Maryland (Chaplin, 2005), North Carolina’s coastal plain
(Sweet & Geratz, 2003), and the Pacific Northwest of the USA (Castro & Jackson, 2001).



79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106
107

manuscript submitted to Water Resources Research

In (2015), Bieger et al. established bankfull hydraulic geometry relationships that covered
eight physiographic divisions, including 22 physiographic provinces as subdivisions across the
USA, by utilizing an extensive dataset compiled from over 50 publications. The accuracy of
channel bankfull prediction was further improved by Blackburn-Lynch et al. (2017) those
developed hydraulic geometry equations for 20 Hydrologic Landscape Regions (HLR) across the
USA. HLR classification was proposed by Wolock et al. (2004) for the CONtiguous United
States (CONUS) based on geology, hydrology, climate, and soil characteristics. These calibrated
equations are now employed to estimate reach-averaged bankfull channel geometry in the

NOAA operational hydrological forecasting framework, the NWM (Gochis et al., 2020).

Despite the ongoing improvements in estimating channel geometry, accuracy remains
limited by factors such as poor dataset quantity and quality, variations in spatial and temporal
characteristics, and a lack of incorporation of catchment and reach attributes. Availability of
large datasets, such as the HY DRoacoustic dataset in support of the Surface Water
Oceanographic Topography (HYDRoSWOT) (Canova et al., 2016; Bjerklie et al., 2020) and the
National Hydrography Dataset Plus (NHDplusv2.1) (McKay et al., 2012), containing extensive
and wide-ranging data on catchment and reach properties, as well as the proliferation of machine
learning algorithms offer new pathways for considerably enhancing the accuracy of channel

geometry estimation.

A recent instance of such modeling is presented in the work of Doyle et al. (2023),
where they explored the potential of employing the random forest algorithm and incorporating
channel and watershed parameters to predict bankfull and low-flow hydraulic attributes of
channels within the CONUS. While their models demonstrated acceptable accuracy, it is
important to note that their application is confined to 1.1 million river segments from
NHDPIlusV2.1 within the sampling frame of the National Rivers and Streams Assessment
(NRSA) datasets utilized in developing the models. This limitation results in the exclusion of
significant regions, such as parts of the southwestern US and the arid foothills of Montana.
Furthermore, the models may underestimate the impact of water impoundments (e.g., dam
density) since the randomized placement of NRSA sample sites might not include sufficient sites

below dams.
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In this paper, we develop and test new CONUS-wide bankfull and mean-flow channel
width and depth datasets. We compare a suite of machine learning algorithms and multi-
regression models. Key methodological novelties introduced in this study include extensive data
quality control and the identification of bankfull and mean-flow observations from cross-
sectional surveyed data through the Acoustic Doppler Current Profiler (ADCP). A validation
process is conducted to assess the efficacy of the developed models. Furthermore, an
independent evaluation procedure is used to evaluate the accuracy of reach-averaged width and
depth using an independent dataset derived from bathymetry surveys. Finally, geospatial datasets
of bankfull and mean-flow width and depth for over 2.6 million reaches across CONUS are
presented and analyzed.

2. Materials and Methods
2.1. Datasets and Pre-processing

The HYDRoSWOT dataset consists of 223,022 observations of channel and flow
attributes obtained using an ADCP at more than 10,081 unique United States Geological Survey
(USGS) stream gages sites, resulting in an average of 22 observations per sit, from the 1940s to
2014 (Canova et al., 2016). Key attributes included in this dataset include discharge, mean depth,
maximum depth, width, cross-sectional area, mean velocity, and maximum velocity. Even
though the data have received approval from the USGS, many records within the dataset contain
blank fields, and a comprehensive examination for outliers or potentially erroneous data entries

has not been carried out (Bjerklie et al., 2020).

For this study, a comprehensive procedure is implemented to enhance the quality of the
HYDRoSWOT dataset. The process begins by filtering out observations containing zero, null, or
negative values in any fields related to drainage area, discharge, mean depth, stream width, mean
velocity, and maximum velocity. Canova et al. (2016) categorized gauge sites into 13 distinct
categories, including atmosphere (AT), estuary (ES), diversion (FA-DV), outfall (FA-OF), QC
lab (FA-QC), lake (LK), coastal (OC-CO), GW drain (SB-GWD), spring (SP), stream (ST),
canal (ST-CA), ditch (ST-DCH), and tidal SW (ST-TS). Following this classification, gauge sites

not identified as "stream (ST)" are excluded from further consideration. Then, observations
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wherein the mean depth surpasses the maximum depth, or the mean velocity exceeds the

maximum velocity are removed.

The discharge measurements obtained through the ADCP technique may contain errors,
which could arise from inaccuracies in measuring flow velocity, errors in extrapolating discharge
through unmeasured subsections, and variations in velocity along the river (Marsden & Ingram,
2004). To ensure the quality of the discharge obtained using this method, another filtration is
considered to identify and eliminate observations that exhibit a discrepancy exceeding 5% within
each pair of discharge values. These discharge values include the discharge value (g_va), the
measured discharge value (meas_q_va), and the calculated discharge derived from the cross-
sectional area multiplied by the mean velocity (q2_xsec_area_X_mean_vel_va). After
implementing the filtration steps, the total number of observations decreased to 38,191 from
4,607 unique sites with an average of 8 observations per site. The dataset following this cleaning

procedure is designated as HYDRoSWOT _init for future reference.

Analyzing the plot of the observed width/depth ratio against discharge for at-a-station
channel geometry observations aids in identifying observations that can be classified as bankfull
conditions. Initially, as discharge increases, both channel width and depth increase. However,
within the channel, depth tends to increase more rapidly than width, resulting in a decrease in the
width/depth ratio with increasing flow discharge. This trend shifts when the flow reaches channel
banks, where even a small increase in channel depth results in a significant increase in the
channel width as water spills over the channel banks onto the floodplain. This sharp increase in
channel width results in an increase in the width/depth ratio with increasing flow discharge. The
breakpoint in the trend, where the relationship changes, can be regarded as a quantitative
indicator of the bankfull condition, as illustrated by Keast and Ellison (2022).

The trend of decreasing width/depth ratio with increasing discharge before the breakpoint
is consistent. However, there is a significant deviation from this general pattern after the
breakpoint. Hence, the data following the breakpoint can be regarded as outliers. The method
proposed in this project for automating the identification of breakpoints in the width/depth ratio
versus discharge plots relies on detecting outliers through the interquartile range (IQR) method.

By applying this method to the HYDRoSWOT _init dataset, an upper limit for channel width is
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established. This limit is defined as Q3+1.5%IQR, where Q3 represents the third quartile and IQR
is the difference between the first quartile (Q1) and Q3. Observations with width values
exceeding this limit were considered as overbank and excluded. From the remaining data, the
observation with the maximum discharge value was selected as the closest representation of the

bankfull condition for each site.

To extract the observation associated with the mean-flow condition for each site, the
observation in the HYDRoSWOT _init dataset with flow discharge that is closest to the
NHDPIlusV2.1 Mean Annual Flow from gage adjustment (QE_MA) attribute is selected. A new
dataset is then created from the selected data for each site. Figure 1 illustrates the observations
for USGS site number 06818000 after the filtration and identification process for bankfull and
mean-flow conditions. This aims to enhance the comprehension of how the parameters for
bankfull and mean-flow are selected in data preprocessing. More detail and additional examples

are provided in Text S1 and Figure S1.

USGS site number 06818000
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Figure 1. Visualization of within channel, overbank, bankfull, and mean-flow observations in the United
States Geological Survey (USGS) site number 06818000.

The NHDPIlusV2.1 dataset contains catchment and stream properties for more than 2.6
million reaches across the United States. This dataset is published by the USGS National Water-
Quality Assessment Project (NAWQA), which is part of the USGS National Water Quality
Program (NWQP) (McKay et al., 2012). The reaches are categorized into six groups within
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NHDPIusV2.1, including StreamRiver, CanalDitch, ArtificialPath, Pipeline, Coastline, and
Connector (Figure 2). For this study, those are categorized as StreamRiver, CanalDitch, and
AcrtificialPath are only considered for further analysis and application. In addition to the original
NHDPIusV2.1, there is a metadata record that contains 13 various themes of datasets of natural
and anthropogenic landscape features linked to the NHDPIlusVV2.1 (Wieczorek et al., 2018).
Some river and catchment characteristics related to population infrastructure, soil, land cover,

and hydrologic modification themes are selected from this metadata.

0 250 500 1,000
I <ilometers

Figure 2. Map of stream/reach types in the National Hydrography Dataset Plus Version 2.1
(NHDplusv2.1).
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The median bed-material sediment particle size (Dso) dataset (Abeshu et al., 2022) is

196  presented in a vector format aligned with approximately 2.7 million river flowlines from the

197  NHDPIlusV2.1 dataset. The Global Aridity Index (Global-Aridity) dataset is a high-resolution
198  global raster climate data at 30 arc seconds (~ 1km at the equator) related to evapotranspiration
199  processes and rainfall deficit for potential vegetative growth (Trabucco & Zomer, 2019). The
200  Mean Aridity Index value was derived for each NHDPIlusV2.1 flow stream using Geographic

201 Information System (GIS). All the mentioned datasets are merged to compile the input dataset

202  for model development. Table 1 presents all attributes along with their related descriptions, data

203  sources, units of measurement, and some descriptive statistics.

204  Table 1. Dataset and attributes used for model development.

Attribute ] o ] ]
Source Attribute description Unit Min Max Mean Std
name
Site no USGS site number - - - - -
Lat Decimal latitude Degrees — — — —
Long Decimal longitude Degrees - - - -
Qpnk Bankfull flow discharge m3/s 0.41 33,1954 32952 1,670.38
Canova et
(Canov dy.  Bankfull depth m 0.30 27.9 254 2.02
al., 2016) .
Whnk Bankfull width m 3.78 1,816.6 63.62 93.84
Qms Mean-flow flow discharge m3/s 0.02 18,228.6  113.65 778.65
Ay Mean-flow depth m 0.19 27.9 1.57 1.62
Win s Mean-flow width m 3.35 2,124.5 55.08 90.54
Modified Strahler stream
SO - 1 10 4.79 1.35
order
Total upstream catchment
DA area from the downstream km? 4,34 2,881,390 19,110.9 138,658
(McKay et .
end of the flowline
al., 2012)
Smoothed minimum
Z ] cm 3 269,497 24,8423 32,354.4
elevation
Slope of flowline based on
S m/m  0.00001 0.08803 0.0018  0.00426

smoothed elevations
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Mean annual flow from gage
adjustment/Best EROM m3/s  0.00017 19,022.01

estimate of actual mean-flow

109.32

739.43

(Wieczorek
etal., 2018)

ND

PD

EVi,

EVI,;

EVI,

EVig,

Cl

Si

Sa

Dv

Accumulated number of dams
built on or before 2010 based

on total upstream

Count 1 41,971

accumulation
Catchment population density
from U.S. block-level Persons
) ] 0.01 4,478.56
population density rasters for  /km?
2010
Catchment mean Enhanced
Vegetation Index value for - 0.01 0.43
the fall season 2011 (OND)
Catchment mean Enhanced
Vegetation Index value for — 0.01 0.44
the winter season 2012 (JFM)
Catchment mean Enhanced
Vegetation Index value for — 0.02 0.62
the spring season 2012 (AMJ)
Catchment mean Enhanced
Vegetation Index value for
— 0.02 0.61
the summer season 2012
(JAS)
Catchment average percent of
% 2.13 68.36
clay
Catchment average percent of

silt

% 4.13 77.24

Catchment average percent of
% 3.04 92.80
sand

Estimated percent of
catchment that contains the

% 0.03 99.92
land-use and land-cover type

developed

248.56

215.47

0.24

0.19

0.39

0.41

23.31

43.44

33.25

22.94

1,955.87

442.14

0.06

0.06

0.09

0.09

11.24

13.63

19.86

2551

10
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Estimated percent of
catchment that contains the
Fr % 0.01 96.85 29.78 25.15
land-use and land-cover type
forest
Estimated percent of
catchment that contains the

Ag % 0.01 95.31 25.68 24.62
land-use and land-cover type

agriculture
(Abeshu et ) ) ) )
D5, Median sediment particle size mm 0.029 89.275 1.349 3.152
al., 2022)
(Trabucco & o
Al Mean Aridity Index - 0.07 2.51 0.79 0.23

Zomer, 2019)

11
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Once compiled, this dataset is subsequently shuffled and distributed randomly into
training and testing sets with a split ratio of 75:25%. The final dataset contains 2626 observations
collected from 2626 USGS gauge sites across the CONUS. The training and testing datasets size
is 1969 and 657, respectively. Figure 3 shows the spatial distribution of the training and testing
datasets over the CONUS.

USGS Gage Sites
* Train Dataset (1969)

* Test Dataset (

0 250 500 1,000
I <ilometers

Figure 3. Spatial distribution map of the training and testing datasets utilized for model development.

2.2. Model Development

Two types of models are developed for each dependent variable (bankfull width, bankfull
depth, mean-flow width, and mean-flow depth) using a suite algorithm (detailed below). The first
tier of models uses HYDRoSWOT-derived discharge, denoted as Q. for bankfull condition and
Qme for mean-flow condition. Although these models exhibit notable performance, their
applicability is limited to gauged rivers where bankfull and mean-flow discharges exist.
Therefore, a second tier of models is developed, in which NHDPIlusV2.1-derived mean annual
flow, denoted as Qg, is used.

2.2.1. Multi-Linear Regression (MLR)

Multi-Linear Regression (MLR) relates the target (dependent) variable to a set of

independent variables. All variables undergo logarithmic transformation to fulfill the

12
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assumptions inherent to regression modeling due to the skewness observed (Holder, 1986). This
methodology has been used widely in developing prediction and forecasting models in water-
related sciences (J et al., 2020; Bastola & Diplas, 2023). In this research, optimized models are
developed for each specific target variable by implementing forward stepwise regression, which

aids in identifying significant variables for modeling efficacy.
2.2.2. Random Forest Regression (RFR)

The Random Forest Regression (RFR) technique is a decision tree-based supervised
model (Breiman, 2001). Due to its ability to handle a wide range of variables, large datasets,
non-linearity among variables, complex higher-order interactions, and missing data (Boulesteix
etal., 2012; Ziegler & Konig, 2014; Boulesteix et al., 2015; Biau & Scornet, 2016), this
algorithm can be employed to model water-related attributes (Shortridge et al., 2016; Worland et
al., 2018; Doyle et al., 2023).

2.2.3. eXtreme Gradient Boosting Regression (XGBR)

Introduced by Chen and Guestrin (2016), eXtreme Gradient Boosting Regression (XGBR)
is another supervised algorithm that utilizes decision trees within the gradient boosting
framework. This model demonstrates superior robustness, improving accuracy and computation
time, achieved through parallel tree construction and learning from past errors to create a more
powerful learner (Zakaria et al., 2023). Some limited studies have been developed in the water
science area using XGBR algorithms (Ni et al., 2020; Nguyen et al., 2021).

2.3. Performance Metrics

Five metrics are utilized as performance indicators to assess the models' performance and
uncertainties, comparing observed and predicted river geometry parameters. These metrics
include the coefficient of determination (R?), the Root Mean Square Error (RMSE), the Absolute
Percent Bias (APB%), the Nash Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE).
For more information about the definition of these metrics, refer to Krause et al. (2005) and
Booker & Woods (2014).

2.4. Independent Evaluation

13
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The models are initially developed and validated using the dataset extracted from the
HYDRoSWOT dataset at selected USGS gauge sites. However, the filtering and the bankfull and
mean-flow width and depth identification procedure may have introduced systematic biases
resulting in reduced accuracy of the model’s predictions. These developed models are utilized to
predict reach-average channel geometry parameters for constructing the CONUS-scale database
(utilizing NHDplusv2.1 in this study). To ensure its applicability, we conduct an evaluation for
locations that were not included in either the training or testing datasets, referred to here as

independent evaluation.

14
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To independently assess the mean-flow width and depth, we generate a new dataset by
averaging reach-averaged width and depth using the US Army Corps of Engineers eHydro

survey database, accessible at https://www.sam.usace.army.mil/Missions/Spatial-Data-

Branch/eHydro/ and
https://www.arcgis.com/apps/dashboards/4b8f2ba307684cf597617bf1b6d2f85d. The
bathymetric survey data in this repository is collected via single-beam or multi-beam sonar, from

small or large ships, and occasionally from planes. Representative mean-flow depth and width
values are extracted from the survey bathymetric raster and assigned to individual NHDplusv2.1
reach 1Ds (COMID). The calculation of representative mean-flow depth involves performing
zonal statistics to obtain the mean of each depth value pixel within the NHDplusv2.1 catchment
boundary, which is then assigned to the corresponding reach. Determining the mean reach width
follows a three-step process. Initially, zonal statistics are applied to sum all the depth pixel
values, calculating the total volume of the bathymetric survey within each NHDplusv2.1
catchment. This volume is then divided by the length of the NHDplusv2.1 reach, yielding the
mean cross-sectional area for that reach. Finally, this cross-sectional area is divided by the mean
depth calculated in the first step, providing a representative value for the stream width of the
corresponding reach. In total, 60 surveys are used to extract data for 394 NHDplusv2.1 reaches
for 25 rivers (refer to Table 2). We calculate the average value of adjacent reaches along a river
path to mitigate spatial autocorrelation within rivers. Consequently, of the 394 reaches, 76
locations are used (check Figure S2 for a spatial distribution map of locations). The model-
predicted parameters are subsequently averaged to the same averaged/joint reaches for the

evaluation analysis.

Table 2. Summary of independent evaluation dataset (eHydro Surveys) for mean-flow condition

including descriptive statistics.

] Number of Winean dmean
River names . .
Reaches Min Max Mean Std Min Max Mean Std
Ohio 82 76.37 78172 37273 118.10 364 1224 699 224
Arkansas 77 3479 64599 37064 9324 202 1086 561 1.99
Monongahela 36 59.99 305.11 17260 4032 345 813 551 1.23
Ilinois 22 28.75 268.90 148.18 55.38 224 436 326 0.57

15
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Missouri 20 98.79 22280 178.36 3433 336 504 435 041
Colorado 20 3.80 21377 80.03 3642 341 6.13 449 0.74
Kaskaskia 20 60.75 106.06 83.86 1200 328 524 4.06 0.53
Tombigbee 16 120 149.15 7864 4245 282 727 463 1.17
Vermilion 14 3426 60.61 44.96 8.27 1.19 277 2.03 0.46
Allegheny 12 137.45 46452 270.05 9176 330 757 515 131
Choptank 12 1775 109.75 56.23 3295 149 214 179 0.20
Mississippi 11 66.37 655.00 366.59 166.44 357 6.30 458 0.91
Kanawha 8 152.68 200.41 18056 17.09 329 441 383 0.39
San Bernard 6 4447 5470 47.76 4.14 341 438 401 0.36
Broad Creek 6 1830 46.01 3525 1083 169 224 198 0.24
James 6 105.39 120.90 115.77 5.76 504 634 561 0.58
Buffalo Bayou 4 89.05 194.44 142779 4372 1196 13.36 1251 0.67
Columbia 4 392.65 957.46 650.88 23231 490 1356 950 4.34
Arroyo Colorado 3 52.65 57.50 55.19 2.43 3.90 438 4.07 0.27
Green 3 69.04 87.01 80.39 9.88 690 7.19 7.00 0.16
Delaware 3 12450 204.10 164.74 39.80 330 698 562 203
Cocheco 3 36.52 4722 4281 5.59 189 206 198 0.09
Willamette 2 329.32 329.86 32959 038 1448 1464 1456 0.12
Alabama 2 14158 169.77 155.67 19.93 450 537 494 0.62
Mackeys Creek 2 100.71 140.16 12044 2790 3.04 318 311 0.09
282 For the evaluation of bankfull width and depth, an observational dataset is compiled from

283 11 published sources (Table 3). These sources include cross-sectional surveys and various

284  hydraulic attribute measurements conducted at USGS gage sites, including bankfull width, depth,
285  and discharge. From this dataset, data related to USGS gages that are not included in the models’
286  training or testing datasets is used. While this dataset is somewhat similar to HYDRoSWOT

287  (cross-sectional observation at USGS gages), the bankfull geometry measurements are

288  independent of our extraction procedure. The resulting evaluation dataset only includes small

289  rivers and streams, with a maximum width and depth of 85.1 and 4.39 meters, respectively

290  (Table 3).

16
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291  Table 3. Summary of independent evaluation dataset (gathered from 11 different sources) for bankfull
292  condition including descriptive statistics.
Number of Whnk dpnk
Source ) )
Reaches Min  Max Mean Std Min  Max Mean Std
(Mulvihill et al., 2009) 31 1468 68.99 308 1536 073 279 125 05
(Keaton et al., 2005) 21 13.35 40.84 2792 822 076 162 123 0.27
(Dutnell, 2000) 20 1285 851 37.06 19.07 071 439 171 0.85
(Moody et al., 2003) 19 13.66 5212 29.16 9.63 073 143 104 0.21
(McCandless & Everett, 2002) 11 1231 26.27 1934 422 079 183 132 031
(Brockman, 2010) 10 1365 3586 2135 6.02 071 188 1.01 0.32
(Lotspeich, 2009) 6 13.81 4115 2451 96 076 204 135 052
(Parola et al., 2007) 6 17.83 3749 2542 6.23 117 389 232 092
(Metcalf, 2004) 5 14.17 40.63 19.79 1042 137 244 179 0.39
(Chase, 2004) 4 3414 4481 3932 452 091 122 11 0.12
(Mccandless, 2003) 3 19.42 3834 26.28 855 085 098 091 0.05
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3. Results and Discussion

3.1. Channel Geometry Modeling

The channel width models show strong prediction capabilities for the testing subset, with

R? values ranging between 0.81 to 0.87, averaging at 0.85 (Figure 4). In contrast, the channel
depth models result in lower predictive capability and a wider range of R?values, from 0.53 to
0.80, averaging at 0.69 (Figure 4). Additionally, the NSE and KGE values are higher for the
width models, underscoring their proficiency compared to depth models. This discrepancy in
performance is attributed to the superior quality of the width dataset employed in model
development relative to the depth observations. The depth measurement presents inherent
challenges, including interference from local obstructions such as debris or vegetation, water
turbulence, and complexities in channel bathymetry. On the other hand, measuring width is

comparatively more straightforward as it can be visually observed.
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Figure 4. Performance metrics for the first and second tiers of models (Model 1 (HYDRoSWOT
discharge) and Model 2 (NHDplusV2.1 discharge), respectively) using Multi-Linear Regression (MLR),
Random Forest Regression (RFR), and eXtreme Gradient Boosting Regression (XGBR) algorithms on the
test dataset to estimate of bankfull width, bankfull depth, mean-flow width, and mean-flow depth.

In the context of predicting width, both tiers of models yield nearly identical results in
terms of accuracy in both bankfull and mean-flow conditions. To illustrate, when employing the
XGBR algorithm, the R? values for the first tier of models are 0.86 and 0.84 for bankfull and
mean-flow conditions, respectively (Figure 4). Similarly, for the second tier of models, the
corresponding R? values are 0.85 and 0.86 for bankfull and mean-flow conditions (Figure 4),

showcasing high consistency between the two models. In contrast, for depth predictions, the first

19



315
316
317
318

319
320
321
322
323
324
325
326

327
328
329
330
331
332
333
334
335
336
337
338
339

manuscript submitted to Water Resources Research

tier of models produces more robust results in the bankfull state than the mean-flow state, with
R? values obtained by XGBR being 0.80 and 0.73, respectively (Figure 4). Conversely, the
second tier of models delivers better results for the mean-flow condition than the bankfull
condition, with R? values obtained by XGBR of 0.68 and 0.63, respectively (Figure 4).

Comparing various metrics values reported in Figure 4, it becomes clear that MLR
models yield less accurate results across almost all attributes, with R? ranging from 0.53 to 0.87
and an average of 0.75. This lower accuracy is attributed to the MLR models' limited ability to
capture non-linear and intricate relationships. In contrast, both RFR and XGBR models, being
tree-based, exhibit more accuracy by adeptly handling non-linearity and complexity. Notably,
models generated by the XGBR algorithm demonstrate the most robust outcomes, with R?
ranging from 0.63 to 0.86 and an average of 0.78, due to their inherently robust algorithms that

can learn from preceding steps.

It is important to note that the data used for creating MLR models was log-transformed to
satisfy the primary assumptions necessary for MLR models. In contrast, the data was not log-
transformed for the RFR and XGBR, as these models do not require preprocessing. This presents
another advantage of utilizing tree-based models like RFR and XGBR over MLR in addition to
their superior accuracy. However, when extending the application of models to all streams in the
CONUS, a limitation emerges with RFR and XGBR. These models need help predicting values
for streams where one or more river and catchment attributes (independent variables) fall outside
the range covered by the training dataset. This often leads to the generation of negative values.
To address this issue, a new approach is adopted: the XGBR model is selected for application to
streams with independent variable values within the range of those in the training datasets. In
contrast, MLR models are applied for streams with independent variable values outside this
range. The MLR power-law equations for the first and second tiers of models (Model 1 and

Model 2, respectively) for each attribute are reported as follows (see Table 1 for annotation):

Whnk, modetr = 5-36 Qs "2 DA®18 AI031 D50003 4gyr—0.02 51008 (1a)
Wpnk, modeiz = 11.58 Q"> EVI, 0?7 NDO034[017 Fr=002 (1b)
dbnk, modell = 353 ank0'31PD_0'022_0'095_0'O3FT_0'03Ag0'OZSi_0'17561_0'15 (1C)
dbnk, models = 1.76 EVIWi—0.13 DA0.19 AIO.ZSz—O.OSS—0.04Fr—0.025i—0.09Sa—0.18 (1d)
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Winean, modell = 581 me0-37EVIwi—0-16ND0.02500.49A10.25D500-04Dv0.0225i—0.08 (16)
Winean, modetz = 7-76 Qg *'EVI,,;~**A1%15 Dy 03 (1f)
dmean, modell = 548 meO'ZSPD_O'OZZ_O'lls_O'OZFT_0'03Si_0'21561_0'15 (lg)

dmean, S 7.41 QE0-24NDO.O4PD—0.02 SO_0'282_0'105_0'02FT_0'04Si_0'19561_0'14 (1h)

Both tiers of models adeptly captured the central tendencies of the data under both
bankfull and mean-flow conditions, as illustrated in Figure 5 and outlined in detail in Table 4.
However, it is noteworthy that the second tier of models demonstrates slightly better
performance than the first. Similarly, both models exhibit an enhanced capability to predict
maximum values accurately. However, the trend differs from that observed for central
tendencies. In bankfull conditions, Model 1 outperforms Model 2. However, under mean-flow

conditions, Model 2 performs better than Model 1.
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Mean-flow Width
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Figure 5. Scatter and violin plots of observations against predictions obtained by the first and second tiers
of models (Model 1 (HYDRoSWOT discharge) and Model 2 (NHDplusV2.1 discharge), respectively))
using the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test dataset to estimate

bankfull width, bankfull depth, mean-flow width, and mean-flow depth.

Table 4. Summary of observation and predicted values ranges, and bias in percent (in parenthesis)
obtained by the first and second tiers of models (Model 1 (HYDRoSWOT discharge) and Model 2
(NHDplusV2.1 discharge), respectively)) using the eXtreme Gradient Boosting Regression (XGBR)
algorithm on the test dataset to estimate bankfull width, bankfull depth, mean-flow width, and mean-flow
depth.

Observation Model 1 Model 2
Attribute
Min Max Mean Min Max Mean Min Max Mean
Bankfull 7.7 992.1 58.2 12.7 1009.9 60.8
) 52 987.6 61.6
Width (m) (46.3%) (0.5%) (-5.6%) (142.0%) (2.3%) (-1.3%)
Bankfull 0.6 14.6 2.5 0.9 15.0 2.4
0.3 14.7 2.4
Depth (m) (88.2%) (-0.9%) (2.6%) (186.9%) (1.8%) (0.4%)
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Mean-flow 6.9 965.1  50.8 8.6 952.3  53.7
_ 47 9571 53.4

Width (m) (47.0%) (0.8%) (-4.9%) (81.3%) (-0.5%) (0.7%)

Mean-flow 0.4 13.8 15 05 125 15

02 128 15
Depth (m) (118.0%) (8.0%) (5.6%) (155.7%) (-2.3%) (5.5%)
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Despite effectively estimating central tendencies and maximum values, both models
demonstrate limitations in accurately predicting minimum values. The first tier of models
displays biases of 46.3% for bankfull width, 88.2% for bankfull depth, 47% for mean-flow
width, and 118% for mean-flow depth. The second tier of models yielded even more significant
biases, with values increasing to 142%, 186.9%, 81.3%, and 155.7%, respectively. These
findings underscore that while XGBR effectively handles non-linear relationships, it might
encounter challenges when dealing with small values that deviate significantly from the general
trends in most of the data. This highlights the importance of understanding the specific
characteristics of the data and considering potential model limitations when relying on the
XGBR to make predictions.

Feature importance analysis (Figure 6) shows that discharge (Qpnk, Qmf, and Qg) plays the
most significant role in predicting the channel geometry parameters. If discharge is removed
from the feature sets used for developing models, the loss function, a mean squared error for the
XGBR algorithm, will increase significantly. Furthermore, the importance of discharge features
is higher for the first tier of models. For instance, in predicting bankfull width using the first tier
of models, the significance of bankfull discharge (Qpnk) is calculated at 55.33%. In contrast, in
the second tier of models, the importance of the flow discharge feature (Qg) decreases to
46.75%. This discrepancy in the importance of discharge attributes between the two models
stems from the specific attributes used to develop each tier. For the first tier, Qpnk and Qms are
used, derived from the ADCP (HYDRoSWOT) measurements. In contrast, the NHDplusV2.1-

derived discharge (Qg) attribute is used in the second tier of models.
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Mean Decrease in Impurity
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377

378  Figure 6. Results of the Mean Decrease in Impurity (MDI) analyses were obtained by applying developed
379  first and second tiers of models (Model 1 (HYDRoSWOT discharge) and Model 2 (NHDplusV2.1

380  discharge), respectively)) using the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test
381 dataset to estimate bankfull width, bankfull depth, mean-flow width, and mean-flow depth.

382 The second and third most significant features vary across different models and

383  attributes. Notably, drainage area (DA), aridity index (Al), stream order (SO), minimum elevation
384  (Z), catchment average percentage of sand (Sa), and enhanced vegetation index (EVI) emerge as
385  the second and third most influential features for different models. The contribution of these

386  parameters can be explained by considering the fundamental principles of river hydrology and

387  geomorphology and the spatial dynamics of channel characteristics from headwaters to river

388  mouths.

389 Higher elevations are often associated with steeper slopes, fostering more energetic flows

390  contributing to channel erosion and sediment transport. The composition of bed materials, like
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the catchment-averaged percentage of sand, directly influences erosion and sediment transport.
This factor contributes to the dynamics of channel morphology and sedimentation patterns.
Furthermore, upstream river areas typically have more natural and intact vegetation cover, as
they are generally less affected by human activities like agriculture or urbanization. This
vegetation cover can influence sediment transport rates, acting as a stabilizing factor. The
combination of channel elevation, climate features, bed-material composition, and vegetation
cover highlights the complex interplay between natural forces and human activities that shape
river systems' hydrological and morphological aspects along their course, resulting in substantial

modifications to river channel geometry.

Although the first tier of models exhibits better accuracy, their applicability is restricted
to USGS gage sites due to the requirement for Qpun and Qur, which is only available for some
streams in the CONUS. Consequently, the second tier of models, developed using Qg derived
from NHDPIlusV2.1 and through a combined approach that incorporates both MLR and XGBR,
are chosen as the final model to predict bankfull width, bankfull depth, mean-flow width, and
mean-flow depth (Figure 7). Maps (Figure 7) are provided for reaches/streams with drainage
areas greater than 100 km? to enhance visualization. However, the final predicted dataset
resulting from this research encompasses values of predicted width and depth under both mean-
flow and bankfull conditions for 2,642,259 reaches in NHDPIlusV2.1.

0 250 500 1,000
I <ilometers
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(b) (©) (d)

Figure 7. Maps of predicted values of (a) bankfull width, (b) bankfull depth, (c) mean-flow width, and
(d) mean-flow depth over CONtiguous United States (CONUS) for reaches/streams in the National
Hydrography Dataset Plus Version 2.1 (NHDplusv2.1) with drainage area greater than 100 km?.

3.2. Independent Evaluations
3.2.1. Mean-flow Condition

The NHDplusV2.1 reach-scale channel geometry estimation (using the XGBR-MLR
coupling) compared against data derived from bathymetry surveys (eHydro database) shows R?
=0.32 for depth and R? =0.84 for width (Figure 8).
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Figure 8. Scatter and violin plots of observations obtained by independent datasets (eHydro surveys)
against predictions derived from the second tier of models (Model 2 (NHDplusV2.1 discharge)), utilizing
a hybrid approach combing eXtreme Gradient Boosting Regression (XGBR) and Multi-Linear Regression
(MLR) algorithms, for the mean-flow condition.

The less accurate results in the mean-flow condition can be attributed to several factors.
First, eHydro surveys typically focus on the middle of the stream, which is accessible to

navigable boats. This leads to a lack of coverage towards the banks and limits the surveys to
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large channels, which creates a bias toward larger stream orders (between 4 and 9). Second, the
spatial distribution of survey locations is concentrated predominantly east of the Mississippi
River (Figure S2). Third, the surveyed lengths may not align with the corresponding
NHDPIusV2.1 reach. Consequently, the extracted values from eHydro for a reach may only
represent a portion of an NHDPIlusV2.1 reach. Fourth, most surveys were conducted from 2017
to 2023, whereas the predictive models are based on data recorded until 2014. This up to nine-
year difference may introduce a bias in the results, as the nature of rivers and their surrounding
environments, which can influence river geometry, undergo substantial changes over time. Fifth,
the surveys have not consistently been conducted during mean-flow conditions, potentially
resulting in extracted values that do not accurately represent the channel geometry attributes at

mean-flow conditions.
3.2.2. Bankfull Condition

The evaluation of NHDplusV2.1 reach-scale bankfull channel geometry estimation
(implemented with the XGBR-MLR coupling) against data gathered from at-a-station bankfull
observations at 11 diverse sources (Check Table 3) yielded a R? of 0.37 for depth and a R? of
0.65 for width (Figure 9).

Independent Evaluation - Bankfull - Model 2

Width ) Depth ‘ Width 5 Depth
R?=0.65 /// R*=0.37 ///
10° RMSE=855m ’ RMSE = 0.49 m ’
,‘ 80 4
E A E
= Y O Eeo s
o « (]
3 . % 3 E 3
8 - 8. g g2
o > a 10
N | 20 1
10 g
4
& 0
10 107 10"
Observation (m) Observation (m) [] Observed M Predicted [] Observed M Predicted
(a)

28



440
441
442
443
444

445
446
447
448
449
450
451
452
453
454

455
456
457
458

459

manuscript submitted to Water Resources Research

Independent Evaluation - Bankfull - RHGC
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Figure 9. Scatter and violin plots of observations obtained by independent datasets (from 11 different
sources) against (a) predictions obtained from applying the second tier of models (Model 2
(NHDplusV2.1 discharge)), utilizing a hybrid approach combing eXtreme Gradient Boosting Regression
(XGBR) and Multi-Linear Regression (MLR) algorithms, for bankfull condition (b) predictions obtained
by applying Regional Hydraulic Geometry Curves (RHGC) model.

The results for bankfull independent evaluation fall short of achieving very high
accuracy. One contributing factor is that the independent evaluation dataset spans from 2000 to
2010. In contrast, the models were developed using measurements up to 2014 and reach and
catchment attributes from 2011 to 2012. Additionally, discrepancies in the definition of bankfull
condition may exist compared to our considerations. Also, the predicted values of bankfull
attributes are reach-averaged while those considered observations come from at-a-station
measurements, which are singular points rather than reach-averaged. Moreover, the
observational dataset exclusively consists of smaller rivers, with a maximum width and depth of
68.99 m and 4.39 m, respectively. This falls within a range where we understand that the
developed model may not offer precise predictions.

A comparison between Figure 9 (a) and Figure 9 (b) reveals a decrease in R? values for
both width and depth, with width decreasing from 0.65 to 0.50 and depth decreasing from 0.37 to
0.21. This illustrates that the developed models demonstrate greater accuracy than the widely
used RHGC method for predicting bankfull width and depth.

4. Conclusions
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This research focuses on developing more accurate models for predicting channel width
and depth under bankfull and mean-flow conditions. Flow discharge features (Qpnk, Qms, and Q)
emerge as the most significant parameters in the models developed, aligning with foundational
river hydraulics principles that link flow discharge to the channel cross-sectional area. The
primary models, incorporating ADCP-measured flow discharge features (Qpnk and Qu),
extracted from the HYDRoSWOT observational dataset through rigorous pre-processing,
outperform secondary models that rely on derived mean annual flow from gage adjustment (Qg)
extracted from the NHDPIlusV2.1 dataset. Additional hydraulic and catchment attributes beyond
discharge and drainage area, such as elevation (Z), stream order (SO), and Aridity Index (Al),
were shown to contribute significantly to the model’s performance. The significant influence of
these attributes underscores the complexity of river geometry spatial dynamics, affected by

factors such as land cover and climate characteristics.

The XGBR algorithm stands out for its power in predicting attributes, showcasing
superior accuracy, adeptness in handling non-linearity, and independence from data
preprocessing. However, limitations arise when applying XGBR to the NHDPlusV2.1 reaches,
with negative values returned for reaches beyond the training range. Consequently, a novel
approach is proposed—a combination of MLR and XGBR as the final model—to address this
limitation and enhance overall predictive capabilities.

An independent evaluation analysis was conducted to quantify the final model’s
predictive accuracy against datasets not associated with the assessed training and testing
(HYDRoSWOT). By comparing the mean-flow geometry estimation with the reach-averaged
channel geometry from eHydro surveys, we can assess how realistic our model (NHDplusV2.1)
is when applied to reach-averaged data. The evaluation was challenging due to the limited
quality of the datasets, which led to less accurate results. However, under bankfull conditions,
the developed models performed better than the RHGC method, indicating improved prediction
accuracy. Furthermore, width prediction consistently proves more accurate across all evaluations
than depth. This discrepancy is attributed to the higher quality of the dataset used for width
model development, as measuring river width is less controversial and complex than measuring

river depth.
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The outcomes of the applied developed models on NHDPIlusV2.1 reaches are presented
as a dataset and four maps. These data and maps are valuable resources for water-related experts,
enabling further investigations to gain a deeper understanding of river channel evolution. These
insights can significantly impact the development of water-related and river studies, including
flood inundation mapping and modeling, river channel geomorphology, ecological
investigations, and biological studies.
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