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Abstract 20 

Widely adopted models for estimating channel geometry attributes rely on simplistic 21 

power-law (hydraulic geometry) equations. This study presents a new generation of channel 22 

geometry models based on a hybrid approach combining traditional statistical methods (Multi-23 

Linear Regression (MLR)) and advanced tree-based Machine Learning (ML) algorithms 24 

(Random Forest Regression (RFR) and eXtreme Gradient Boosting Regression (XGBR)), 25 

utilizing novel datasets. To achieve this, a new preprocessing method was applied to refine an 26 

extensive observational dataset, namely the HYDRoacoustic dataset supporting Surface Water 27 

Oceanographic Topography (HYDRoSWOT). This process improved data quality and identified 28 

observations representing bankfull and mean-flow conditions. A compiled dataset, combining the 29 

preprocessed dataset with datasets containing additional catchment attributes like the National 30 

Hydrography Dataset Plus (NHDplusv2.1), was then used to train a suite of models to predict 31 

channel width and depth under bankfull and mean-flow conditions. The analysis shows that tree-32 

based ML algorithms outperform traditional statistical methods in accuracy and handling the data 33 

but face limitations in prediction capabilities for streams with characteristics outside the training 34 

range. Consequently, a hybrid method was selected, combining XGBR for streams within the 35 

dataset range and MLR for those outside it. Two tiers of models were developed for each 36 

attribute using discharges derived from distinct sources (HYDRoSWOT and NHDPlusV2.1, 37 

respectively), where the second tier of models offers applicability across approximately 2.6 38 

million streams within NHDplusv2.1. Comprehensive independent evaluations are conducted to 39 

assess the capability of the developed models in providing stream/reach-averaged (rather than at-40 

a-station) predictions for locations outside the training and testing datasets. 41 

1.  Introduction 42 

Rivers, dynamic features of the earth's natural system, play a significant role in the lives 43 

of humans, flora, and fauna (Gleason, 2015; Wilby & Gibert, 1996). Estimating river hydraulic 44 

characteristics, such as width and depth, is crucial in analyzing river channel geomorphology 45 

(Harrelson et al., 1994; Monegaglia & Tubino, 2019; Naito & Parker, 2020; Zhou et al., 2022), 46 

the stream’s ecology and water quality state (Walling & Webb, 1975; Rice et al., 2001; Thoms, 47 

2003; Sobotka & Phelps, 2017), river management (Rosgen, 1994; Andrews & Nankervis, 1995; 48 
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Clerici et al., 2015), and flood forecasting and management (Orlandini & Rosso, 1998; Neal et 49 

al., 2015; Dey et al., 2022; Heldmyer et al., 2022). 50 

Hydraulic geometry is critical in refining hydrological models, particularly within 51 

operational forecasting frameworks such as the National Oceanic and Atmospheric 52 

Administration (NOAA) National Water Model (NWM). These models often oversimplify key 53 

attributes, which limits their ability to accurately capture the intricate dynamics and routing of 54 

natural water systems. Consequently, this simplification undermines the accuracy of streamflow 55 

predictions. The NOAA Office of Water Prediction (OWP) relies on NWM-forecasted 56 

streamflow to produce Flood Inundation Mapping (FIM) via the Height Above Nearest Drainage 57 

(HAND) method. Additionally, models of channel geometry can be utilized to develop a refined 58 

Digital Elevation Model (DEM) that accurately represents both topography and the unique 59 

characteristics of river channels. This burned DEM can further enhance the accuracy of HAND-60 

FIM predictions. 61 

Leopold and Maddock Jr (1953) proposed a set of power-law equations to predict the 62 

mean hydraulic geometry attributes based on mean-flow discharge. This set of equations can be 63 

employed to predict bankfull hydraulic geometry attributes by replacing bankfull flow discharge 64 

with the previously considered mean-flow discharge (Leopold et al., 1964). Bankfull channel 65 

geometry is frequently used in hydrological modeling and analysis (Wolman & Leopold, 1957; 66 

Leopold et al., 1964; Williams, 1978; Radecki-Pawlik, 2002; Navratil et al., 2006; Charlton, 67 

2007; Naito & Parker, 2019; Keast & Ellison, 2022). A similar methodology, known as Regional 68 

Hydraulic Geometry Curves (RHGC), was proposed by Dunne and Leopold (1978) to estimate 69 

the bankfull hydraulic attributes based on drainage area. This approach effectively resolved the 70 

challenge of restricting the utilization of hydraulic geometry solely to rivers and streams with 71 

recorded flow discharge by substituting flow discharge with drainage area (Ames et al., 2009). 72 

However, these equations were not widely utilized due to the lack of available measured channel 73 

dimensions necessary for their development over extensive geographic areas (Bieger et al., 74 

2015). To address this limitation, various studies proposed to localize the regional curves for 75 

different regions across the United States, such as New York state (Mulvihill & Baldigo, 2012), 76 

Pennsylvania, and selected areas of Maryland (Chaplin, 2005), North Carolina’s coastal plain 77 

(Sweet & Geratz, 2003), and the Pacific Northwest of the USA (Castro & Jackson, 2001). 78 
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In (2015), Bieger et al. established bankfull hydraulic geometry relationships that covered 79 

eight physiographic divisions, including 22 physiographic provinces as subdivisions across the 80 

USA, by utilizing an extensive dataset compiled from over 50 publications. The accuracy of 81 

channel bankfull prediction was further improved by Blackburn-Lynch et al. (2017) those 82 

developed hydraulic geometry equations for 20 Hydrologic Landscape Regions (HLR) across the 83 

USA. HLR classification was proposed by Wolock et al. (2004) for the CONtiguous United 84 

States (CONUS) based on geology, hydrology, climate, and soil characteristics. These calibrated 85 

equations are now employed to estimate reach-averaged bankfull channel geometry in the 86 

NOAA operational hydrological forecasting framework, the NWM (Gochis et al., 2020).  87 

Despite the ongoing improvements in estimating channel geometry, accuracy remains 88 

limited by factors such as poor dataset quantity and quality, variations in spatial and temporal 89 

characteristics, and a lack of incorporation of catchment and reach attributes. Availability of 90 

large datasets, such as the HYDRoacoustic dataset in support of the Surface Water 91 

Oceanographic Topography (HYDRoSWOT) (Canova et al., 2016; Bjerklie et al., 2020) and the 92 

National Hydrography Dataset Plus (NHDplusv2.1) (McKay et al., 2012), containing extensive 93 

and wide-ranging data on catchment and reach properties, as well as the proliferation of machine 94 

learning algorithms offer new pathways for considerably enhancing the accuracy of channel 95 

geometry estimation.  96 

A recent instance of such modeling is presented in the work of  Doyle et al. (2023), 97 

where they explored the potential of employing the random forest algorithm and incorporating 98 

channel and watershed parameters to predict bankfull and low-flow hydraulic attributes of 99 

channels within the CONUS. While their models demonstrated acceptable accuracy, it is 100 

important to note that their application is confined to 1.1 million river segments from 101 

NHDPlusV2.1 within the sampling frame of the National Rivers and Streams Assessment 102 

(NRSA) datasets utilized in developing the models. This limitation results in the exclusion of 103 

significant regions, such as parts of the southwestern US and the arid foothills of Montana. 104 

Furthermore, the models may underestimate the impact of water impoundments (e.g., dam 105 

density) since the randomized placement of NRSA sample sites might not include sufficient sites 106 

below dams. 107 
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In this paper, we develop and test new CONUS-wide bankfull and mean-flow channel 108 

width and depth datasets. We compare a suite of machine learning algorithms and multi-109 

regression models. Key methodological novelties introduced in this study include extensive data 110 

quality control and the identification of bankfull and mean-flow observations from cross-111 

sectional surveyed data through the Acoustic Doppler Current Profiler (ADCP). A validation 112 

process is conducted to assess the efficacy of the developed models. Furthermore, an 113 

independent evaluation procedure is used to evaluate the accuracy of reach-averaged width and 114 

depth using an independent dataset derived from bathymetry surveys. Finally, geospatial datasets 115 

of bankfull and mean-flow width and depth for over 2.6 million reaches across CONUS are 116 

presented and analyzed. 117 

2. Materials and Methods 118 

2.1. Datasets and Pre-processing 119 

The HYDRoSWOT dataset consists of 223,022 observations of channel and flow 120 

attributes obtained using an ADCP at more than 10,081 unique United States Geological Survey 121 

(USGS) stream gages sites, resulting in an average of 22 observations per sit, from the 1940s to 122 

2014 (Canova et al., 2016). Key attributes included in this dataset include discharge, mean depth, 123 

maximum depth, width, cross-sectional area, mean velocity, and maximum velocity. Even 124 

though the data have received approval from the USGS, many records within the dataset contain 125 

blank fields, and a comprehensive examination for outliers or potentially erroneous data entries 126 

has not been carried out (Bjerklie et al., 2020). 127 

For this study, a comprehensive procedure is implemented to enhance the quality of the 128 

HYDRoSWOT dataset. The process begins by filtering out observations containing zero, null, or 129 

negative values in any fields related to drainage area, discharge, mean depth, stream width, mean 130 

velocity, and maximum velocity. Canova et al. (2016) categorized gauge sites into 13 distinct 131 

categories, including atmosphere (AT), estuary (ES), diversion (FA-DV), outfall (FA-OF), QC 132 

lab (FA-QC), lake (LK), coastal (OC-CO), GW drain (SB-GWD), spring (SP), stream (ST), 133 

canal (ST-CA), ditch (ST-DCH), and tidal SW (ST-TS). Following this classification, gauge sites 134 

not identified as "stream (ST)" are excluded from further consideration. Then, observations 135 
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wherein the mean depth surpasses the maximum depth, or the mean velocity exceeds the 136 

maximum velocity are removed.  137 

The discharge measurements obtained through the ADCP technique may contain errors, 138 

which could arise from inaccuracies in measuring flow velocity, errors in extrapolating discharge 139 

through unmeasured subsections, and variations in velocity along the river (Marsden & Ingram, 140 

2004). To ensure the quality of the discharge obtained using this method, another filtration is 141 

considered to identify and eliminate observations that exhibit a discrepancy exceeding 5% within 142 

each pair of discharge values. These discharge values include the discharge value (q_va), the 143 

measured discharge value (meas_q_va), and the calculated discharge derived from the cross-144 

sectional area multiplied by the mean velocity (q2_xsec_area_X_mean_vel_va). After 145 

implementing the filtration steps, the total number of observations decreased to 38,191 from 146 

4,607 unique sites with an average of 8 observations per site. The dataset following this cleaning 147 

procedure is designated as HYDRoSWOT_init for future reference.  148 

Analyzing the plot of the observed width/depth ratio against discharge for at-a-station 149 

channel geometry observations aids in identifying observations that can be classified as bankfull 150 

conditions. Initially, as discharge increases, both channel width and depth increase. However, 151 

within the channel, depth tends to increase more rapidly than width, resulting in a decrease in the 152 

width/depth ratio with increasing flow discharge. This trend shifts when the flow reaches channel 153 

banks, where even a small increase in channel depth results in a significant increase in the 154 

channel width as water spills over the channel banks onto the floodplain. This sharp increase in 155 

channel width results in an increase in the width/depth ratio with increasing flow discharge. The 156 

breakpoint in the trend, where the relationship changes, can be regarded as a quantitative 157 

indicator of the bankfull condition, as illustrated by Keast and Ellison (2022). 158 

The trend of decreasing width/depth ratio with increasing discharge before the breakpoint 159 

is consistent. However, there is a significant deviation from this general pattern after the 160 

breakpoint. Hence, the data following the breakpoint can be regarded as outliers. The method 161 

proposed in this project for automating the identification of breakpoints in the width/depth ratio 162 

versus discharge plots relies on detecting outliers through the interquartile range (IQR) method. 163 

By applying this method to the HYDRoSWOT_init dataset, an upper limit for channel width is 164 
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established. This limit is defined as Q3+1.5×IQR, where Q3 represents the third quartile and IQR 165 

is the difference between the first quartile (Q1) and Q3. Observations with width values 166 

exceeding this limit were considered as overbank and excluded. From the remaining data, the 167 

observation with the maximum discharge value was selected as the closest representation of the 168 

bankfull condition for each site. 169 

To extract the observation associated with the mean-flow condition for each site, the 170 

observation in the HYDRoSWOT_init dataset with flow discharge that is closest to the 171 

NHDPlusV2.1 Mean Annual Flow from gage adjustment (QE_MA) attribute is selected. A new 172 

dataset is then created from the selected data for each site. Figure 1 illustrates the observations 173 

for USGS site number 06818000 after the filtration and identification process for bankfull and 174 

mean-flow conditions. This aims to enhance the comprehension of how the parameters for 175 

bankfull and mean-flow are selected in data preprocessing. More detail and additional examples 176 

are provided in Text S1 and Figure S1. 177 

 178 

Figure 1. Visualization of within channel, overbank, bankfull, and mean-flow observations in the United 179 

States Geological Survey (USGS) site number 06818000. 180 

The NHDPlusV2.1 dataset contains catchment and stream properties for more than 2.6 181 

million reaches across the United States. This dataset is published by the USGS National Water-182 

Quality Assessment Project (NAWQA), which is part of the USGS National Water Quality 183 

Program (NWQP) (McKay et al., 2012). The reaches are categorized into six groups within 184 
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NHDPlusV2.1, including StreamRiver, CanalDitch, ArtificialPath, Pipeline, Coastline, and 185 

Connector (Figure 2). For this study, those are categorized as StreamRiver, CanalDitch, and 186 

ArtificialPath are only considered for further analysis and application. In addition to the original 187 

NHDPlusV2.1, there is a metadata record that contains 13 various themes of datasets of natural 188 

and anthropogenic landscape features linked to the NHDPlusV2.1 (Wieczorek et al., 2018). 189 

Some river and catchment characteristics related to population infrastructure, soil, land cover, 190 

and hydrologic modification themes are selected from this metadata. 191 

 192 

Figure 2. Map of stream/reach types in the National Hydrography Dataset Plus Version 2.1 193 

(NHDplusv2.1). 194 
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The median bed-material sediment particle size (D50) dataset (Abeshu et al., 2022) is 195 

presented in a vector format aligned with approximately 2.7 million river flowlines from the 196 

NHDPlusV2.1 dataset. The Global Aridity Index (Global-Aridity) dataset is a high-resolution 197 

global raster climate data at 30 arc seconds (~ 1km at the equator) related to evapotranspiration 198 

processes and rainfall deficit for potential vegetative growth (Trabucco & Zomer, 2019). The 199 

Mean Aridity Index value was derived for each NHDPlusV2.1 flow stream using Geographic 200 

Information System (GIS). All the mentioned datasets are merged to compile the input dataset 201 

for model development. Table 1 presents all attributes along with their related descriptions, data 202 

sources, units of measurement, and some descriptive statistics.  203 

Table 1. Dataset and attributes used for model development. 204 

Source 
Attribute 

name 
Attribute description Unit Min Max Mean Std 

(Canova et 

al., 2016) 

𝑆𝑖𝑡𝑒 𝑛𝑜 USGS site number − − − − − 

𝐿𝑎𝑡 Decimal latitude 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 − − − − 

𝐿𝑜𝑛𝑔 Decimal longitude 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 − − − − 

𝑄𝑏𝑛𝑘 Bankfull flow discharge  𝑚3/𝑠 0.41 33,195.4 329.52 1,670.38 

𝑑𝑏𝑛𝑘 Bankfull depth 𝑚 0.30 27.9 2.54 2.02 

𝑤𝑏𝑛𝑘 Bankfull width 𝑚 3.78 1,816.6 63.62 93.84 

𝑄𝑚𝑓 Mean-flow flow discharge 𝑚3/𝑠 0.02 18,228.6 113.65 778.65 

𝑑𝑚𝑓 Mean-flow depth 𝑚 0.19 27.9 1.57 1.62 

𝑤𝑚𝑓 Mean-flow width 𝑚 3.35 2,124.5 55.08 90.54 

(McKay et 

al., 2012) 

𝑆𝑂 
Modified Strahler stream 

order 
− 1 10 4.79 1.35 

𝐷𝐴 

Total upstream catchment 

area from the downstream 

end of the flowline 

𝑘𝑚2 4.34 2,881,390 19,110.9 138,658 

𝑍 
Smoothed minimum 

elevation 
𝑐𝑚 3 269,497 24,842.3 32,354.4 

𝑆 
Slope of flowline based on 

smoothed elevations 
𝑚/𝑚 0.00001 0.08803 0.0018 0.00426 
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𝑄𝐸 

Mean annual flow from gage 

adjustment/Best EROM 

estimate of actual mean-flow 

𝑚3/𝑠 0.00017 19,022.01 109.32 739.43 

(Wieczorek 

et al., 2018) 

𝑁𝐷 

Accumulated number of dams 

built on or before 2010 based 

on total upstream 

accumulation 

𝐶𝑜𝑢𝑛𝑡 1 41,971 248.56 1,955.87 

𝑃𝐷 

Catchment population density 

from U.S. block-level 

population density rasters for 

2010 

𝑃𝑒𝑟𝑠𝑜𝑛𝑠

/𝑘𝑚2 
0.01 4,478.56 215.47 442.14 

𝐸𝑉𝐼𝑓𝑎 

Catchment mean Enhanced 

Vegetation Index value for 

the fall season 2011 (OND) 

− 0.01 0.43 0.24 0.06 

𝐸𝑉𝐼𝑤𝑖 

Catchment mean Enhanced 

Vegetation Index value for 

the winter season 2012 (JFM) 

− 0.01 0.44 0.19 0.06 

𝐸𝑉𝐼𝑠𝑝 

Catchment mean Enhanced 

Vegetation Index value for 

the spring season 2012 (AMJ) 

− 0.02 0.62 0.39 0.09 

𝐸𝑉𝐼𝑠𝑢 

Catchment mean Enhanced 

Vegetation Index value for 

the summer season 2012 

(JAS) 

− 0.02 0.61 0.41 0.09 

𝐶𝑙 
Catchment average percent of 

clay 
% 2.13 68.36 23.31 11.24 

𝑆𝑖 
Catchment average percent of 

silt 
% 4.13 77.24 43.44 13.63 

𝑆𝑎 
Catchment average percent of 

sand 
% 3.04 92.80 33.25 19.86 

𝐷𝑣 

Estimated percent of 

catchment that contains the 

land-use and land-cover type 

developed 

% 0.03 99.92 22.94 25.51 
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𝐹𝑟 

Estimated percent of 

catchment that contains the 

land-use and land-cover type 

forest 

% 0.01 96.85 29.78 25.15 

𝐴𝑔 

Estimated percent of 

catchment that contains the 

land-use and land-cover type 

agriculture 

% 0.01 95.31 25.68 24.62 

(Abeshu et 

al., 2022) 
𝐷50 Median sediment particle size 𝑚𝑚 0.029 89.275 1.349 3.152 

(Trabucco & 

Zomer, 2019) 
𝐴𝐼 Mean Aridity Index − 0.07 2.51 0.79 0.23 
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 Once compiled, this dataset is subsequently shuffled and distributed randomly into 205 

training and testing sets with a split ratio of 75:25%. The final dataset contains 2626 observations 206 

collected from 2626 USGS gauge sites across the CONUS. The training and testing datasets size 207 

is 1969 and 657, respectively. Figure 3 shows the spatial distribution of the training and testing 208 

datasets over the CONUS. 209 

 210 

Figure 3. Spatial distribution map of the training and testing datasets utilized for model development. 211 

2.2. Model Development 212 

Two types of models are developed for each dependent variable (bankfull width, bankfull 213 

depth, mean-flow width, and mean-flow depth) using a suite algorithm (detailed below). The first 214 

tier of models uses HYDRoSWOT-derived discharge, denoted as Qbnk for bankfull condition and 215 

Qmf for mean-flow condition. Although these models exhibit notable performance, their 216 

applicability is limited to gauged rivers where bankfull and mean-flow discharges exist. 217 

Therefore, a second tier of models is developed, in which NHDPlusV2.1-derived mean annual 218 

flow, denoted as QE, is used.  219 

2.2.1. Multi-Linear Regression (MLR) 220 

Multi-Linear Regression (MLR) relates the target (dependent) variable to a set of 221 

independent variables. All variables undergo logarithmic transformation to fulfill the 222 
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assumptions inherent to regression modeling due to the skewness observed (Holder, 1986). This 223 

methodology has been used widely in developing prediction and forecasting models in water-224 

related sciences (J et al., 2020; Bastola & Diplas, 2023). In this research, optimized models are 225 

developed for each specific target variable by implementing forward stepwise regression, which 226 

aids in identifying significant variables for modeling efficacy. 227 

2.2.2. Random Forest Regression (RFR) 228 

The Random Forest Regression (RFR) technique is a decision tree-based supervised 229 

model (Breiman, 2001). Due to its ability to handle a wide range of variables, large datasets, 230 

non-linearity among variables, complex higher-order interactions, and missing data (Boulesteix 231 

et al., 2012; Ziegler & König, 2014; Boulesteix et al., 2015; Biau & Scornet, 2016), this 232 

algorithm can be employed to model water-related attributes (Shortridge et al., 2016; Worland et 233 

al., 2018; Doyle et al., 2023). 234 

2.2.3. eXtreme Gradient Boosting Regression (XGBR) 235 

Introduced by Chen and Guestrin (2016), eXtreme Gradient Boosting Regression (XGBR) 236 

is another supervised algorithm that utilizes decision trees within the gradient boosting 237 

framework. This model demonstrates superior robustness, improving accuracy and computation 238 

time, achieved through parallel tree construction and learning from past errors to create a more 239 

powerful learner (Zakaria et al., 2023). Some limited studies have been developed in the water 240 

science area using XGBR algorithms (Ni et al., 2020; Nguyen et al., 2021). 241 

2.3. Performance Metrics 242 

Five metrics are utilized as performance indicators to assess the models' performance and 243 

uncertainties, comparing observed and predicted river geometry parameters. These metrics 244 

include the coefficient of determination (R
2
), the Root Mean Square Error (RMSE), the Absolute 245 

Percent Bias (APB%), the Nash Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE). 246 

For more information about the definition of these metrics, refer to Krause et al. (2005) and 247 

Booker & Woods (2014). 248 

2.4. Independent Evaluation 249 
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The models are initially developed and validated using the dataset extracted from the 250 

HYDRoSWOT dataset at selected USGS gauge sites. However, the filtering and the bankfull and 251 

mean-flow width and depth identification procedure may have introduced systematic biases 252 

resulting in reduced accuracy of the model’s predictions. These developed models are utilized to 253 

predict reach-average channel geometry parameters for constructing the CONUS-scale database 254 

(utilizing NHDplusv2.1 in this study). To ensure its applicability, we conduct an evaluation for 255 

locations that were not included in either the training or testing datasets, referred to here as 256 

independent evaluation. 257 
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To independently assess the mean-flow width and depth, we generate a new dataset by 258 

averaging reach-averaged width and depth using the US Army Corps of Engineers eHydro 259 

survey database, accessible at https://www.sam.usace.army.mil/Missions/Spatial-Data-260 

Branch/eHydro/  and 261 

https://www.arcgis.com/apps/dashboards/4b8f2ba307684cf597617bf1b6d2f85d. The 262 

bathymetric survey data in this repository is collected via single-beam or multi-beam sonar, from 263 

small or large ships, and occasionally from planes. Representative mean-flow depth and width 264 

values are extracted from the survey bathymetric raster and assigned to individual NHDplusv2.1 265 

reach IDs (COMID). The calculation of representative mean-flow depth involves performing 266 

zonal statistics to obtain the mean of each depth value pixel within the NHDplusv2.1 catchment 267 

boundary, which is then assigned to the corresponding reach. Determining the mean reach width 268 

follows a three-step process. Initially, zonal statistics are applied to sum all the depth pixel 269 

values, calculating the total volume of the bathymetric survey within each NHDplusv2.1 270 

catchment. This volume is then divided by the length of the NHDplusv2.1 reach, yielding the 271 

mean cross-sectional area for that reach. Finally, this cross-sectional area is divided by the mean 272 

depth calculated in the first step, providing a representative value for the stream width of the 273 

corresponding reach. In total, 60 surveys are used to extract data for 394 NHDplusv2.1 reaches 274 

for 25 rivers (refer to Table 2). We calculate the average value of adjacent reaches along a river 275 

path to mitigate spatial autocorrelation within rivers. Consequently, of the 394 reaches, 76 276 

locations are used (check Figure S2 for a spatial distribution map of locations). The model-277 

predicted parameters are subsequently averaged to the same averaged/joint reaches for the 278 

evaluation analysis. 279 

Table 2. Summary of independent evaluation dataset (eHydro Surveys) for mean-flow condition 280 

including descriptive statistics. 281 

River names 
Number of 

Reaches 

𝑤𝑚𝑒𝑎𝑛 𝑑𝑚𝑒𝑎𝑛 

Min Max Mean Std Min Max Mean Std 

Ohio  82 76.37 781.72 372.73 118.10 3.64 12.24 6.99 2.24 

Arkansas  77 34.79 645.99 370.64 93.24 2.02 10.86 5.61 1.99 

Monongahela  36 59.99 305.11 172.60 40.32 3.45 8.13 5.51 1.23 

Illinois  22 28.75 268.90 148.18 55.38 2.24 4.36 3.26 0.57 

https://www.sam.usace.army.mil/Missions/Spatial-Data-Branch/eHydro/
https://www.sam.usace.army.mil/Missions/Spatial-Data-Branch/eHydro/
https://www.arcgis.com/apps/dashboards/4b8f2ba307684cf597617bf1b6d2f85d
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Missouri  20 98.79 222.80 178.36 34.33 3.36 5.04 4.35 0.41 

Colorado  20 3.80 213.77 80.03 36.42 3.41 6.13 4.49 0.74 

Kaskaskia  20 60.75 106.06 83.86 12.00 3.28 5.24 4.06 0.53 

Tombigbee  16 1.20 149.15 78.64 42.45 2.82 7.27 4.63 1.17 

Vermilion  14 34.26 60.61 44.96 8.27 1.19 2.77 2.03 0.46 

Allegheny  12 137.45 464.52 270.05 91.76 3.30 7.57 5.15 1.31 

Choptank  12 17.75 109.75 56.23 32.95 1.49 2.14 1.79 0.20 

Mississippi  11 66.37 655.00 366.59 166.44 3.57 6.30 4.58 0.91 

Kanawha  8 152.68 200.41 180.56 17.09 3.29 4.41 3.83 0.39 

San Bernard  6 44.47 54.70 47.76 4.14 3.41 4.38 4.01 0.36 

Broad Creek 6 18.30 46.01 35.25 10.83 1.69 2.24 1.98 0.24 

James  6 105.39 120.90 115.77 5.76 5.04 6.34 5.61 0.58 

Buffalo Bayou 4 89.05 194.44 142.79 43.72 11.96 13.36 12.51 0.67 

Columbia  4 392.65 957.46 650.88 232.31 4.90 13.56 9.50 4.34 

Arroyo Colorado 3 52.65 57.50 55.19 2.43 3.90 4.38 4.07 0.27 

Green  3 69.04 87.01 80.39 9.88 6.90 7.19 7.00 0.16 

Delaware  3 124.50 204.10 164.74 39.80 3.30 6.98 5.62 2.03 

Cocheco  3 36.52 47.22 42.81 5.59 1.89 2.06 1.98 0.09 

Willamette  2 329.32 329.86 329.59 0.38 14.48 14.64 14.56 0.12 

Alabama  2 141.58 169.77 155.67 19.93 4.50 5.37 4.94 0.62 

Mackeys Creek 2 100.71 140.16 120.44 27.90 3.04 3.18 3.11 0.09 

For the evaluation of bankfull width and depth, an observational dataset is compiled from 282 

11 published sources (Table 3). These sources include cross-sectional surveys and various 283 

hydraulic attribute measurements conducted at USGS gage sites, including bankfull width, depth, 284 

and discharge. From this dataset, data related to USGS gages that are not included in the models’ 285 

training or testing datasets is used. While this dataset is somewhat similar to HYDRoSWOT 286 

(cross-sectional observation at USGS gages), the bankfull geometry measurements are 287 

independent of our extraction procedure. The resulting evaluation dataset only includes small 288 

rivers and streams, with a maximum width and depth of 85.1 and 4.39 meters, respectively 289 

(Table 3).  290 
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Table 3. Summary of independent evaluation dataset (gathered from 11 different sources) for bankfull 291 

condition including descriptive statistics. 292 

Source 
Number of 

Reaches 

𝑤𝑏𝑛𝑘 𝑑𝑏𝑛𝑘 

Min Max Mean Std Min Max Mean Std 

(Mulvihill et al., 2009) 31 14.68 68.99 30.8 15.36 0.73 2.79 1.25 0.5 

(Keaton et al., 2005) 21 13.35 40.84 27.92 8.22 0.76 1.62 1.23 0.27 

(Dutnell, 2000)  20 12.85 85.1 37.06 19.07 0.71 4.39 1.71 0.85 

(Moody et al., 2003) 19 13.66 52.12 29.16 9.63 0.73 1.43 1.04 0.21 

(McCandless & Everett, 2002) 11 12.31 26.27 19.34 4.22 0.79 1.83 1.32 0.31 

(Brockman, 2010) 10 13.65 35.86 21.35 6.02 0.71 1.88 1.01 0.32 

(Lotspeich, 2009) 6 13.81 41.15 24.51 9.6 0.76 2.04 1.35 0.52 

(Parola et al., 2007) 6 17.83 37.49 25.42 6.23 1.17 3.89 2.32 0.92 

(Metcalf, 2004) 5 14.17 40.63 19.79 10.42 1.37 2.44 1.79 0.39 

(Chase, 2004) 4 34.14 44.81 39.32 4.52 0.91 1.22 1.1 0.12 

(Mccandless, 2003) 3 19.42 38.34 26.28 8.55 0.85 0.98 0.91 0.05 
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3. Results and Discussion 293 

3.1. Channel Geometry Modeling 294 

The channel width models show strong prediction capabilities for the testing subset, with 295 

R
2
 values ranging between 0.81 to 0.87, averaging at 0.85 (Figure 4). In contrast, the channel 296 

depth models result in lower predictive capability and a wider range of R
2 
values, from 0.53 to 297 

0.80, averaging at 0.69 (Figure 4). Additionally, the NSE and KGE values are higher for the 298 

width models, underscoring their proficiency compared to depth models. This discrepancy in 299 

performance is attributed to the superior quality of the width dataset employed in model 300 

development relative to the depth observations. The depth measurement presents inherent 301 

challenges, including interference from local obstructions such as debris or vegetation, water 302 

turbulence, and complexities in channel bathymetry. On the other hand, measuring width is 303 

comparatively more straightforward as it can be visually observed.  304 
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Figure 4. Performance metrics for the first and second tiers of models (Model 1 (HYDRoSWOT 305 

discharge) and Model 2 (NHDplusV2.1 discharge), respectively) using Multi-Linear Regression (MLR), 306 

Random Forest Regression (RFR), and eXtreme Gradient Boosting Regression (XGBR) algorithms on the 307 

test dataset to estimate of bankfull width, bankfull depth, mean-flow width, and mean-flow depth. 308 

In the context of predicting width, both tiers of models yield nearly identical results in 309 

terms of accuracy in both bankfull and mean-flow conditions. To illustrate, when employing the 310 

XGBR algorithm, the R
2
 values for the first tier of models are 0.86 and 0.84 for bankfull and 311 

mean-flow conditions, respectively (Figure 4). Similarly, for the second tier of models, the 312 

corresponding R
2
 values are 0.85 and 0.86 for bankfull and mean-flow conditions (Figure 4), 313 

showcasing high consistency between the two models. In contrast, for depth predictions, the first 314 
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tier of models produces more robust results in the bankfull state than the mean-flow state, with 315 

R
2
 values obtained by XGBR being 0.80 and 0.73, respectively (Figure 4). Conversely, the 316 

second tier of models delivers better results for the mean-flow condition than the bankfull 317 

condition, with R
2
 values obtained by XGBR of 0.68 and 0.63, respectively (Figure 4). 318 

Comparing various metrics values reported in Figure 4, it becomes clear that MLR 319 

models yield less accurate results across almost all attributes, with R
2
 ranging from 0.53 to 0.87 320 

and an average of 0.75. This lower accuracy is attributed to the MLR models' limited ability to 321 

capture non-linear and intricate relationships. In contrast, both RFR and XGBR models, being 322 

tree-based, exhibit more accuracy by adeptly handling non-linearity and complexity. Notably, 323 

models generated by the XGBR algorithm demonstrate the most robust outcomes, with R
2
 324 

ranging from 0.63 to 0.86 and an average of 0.78, due to their inherently robust algorithms that 325 

can learn from preceding steps.  326 

It is important to note that the data used for creating MLR models was log-transformed to 327 

satisfy the primary assumptions necessary for MLR models. In contrast, the data was not log-328 

transformed for the RFR and XGBR, as these models do not require preprocessing. This presents 329 

another advantage of utilizing tree-based models like RFR and XGBR over MLR in addition to 330 

their superior accuracy. However, when extending the application of models to all streams in the 331 

CONUS, a limitation emerges with RFR and XGBR. These models need help predicting values 332 

for streams where one or more river and catchment attributes (independent variables) fall outside 333 

the range covered by the training dataset. This often leads to the generation of negative values. 334 

To address this issue, a new approach is adopted: the XGBR model is selected for application to 335 

streams with independent variable values within the range of those in the training datasets. In 336 

contrast, MLR models are applied for streams with independent variable values outside this 337 

range. The MLR power-law equations for the first and second tiers of models (Model 1 and 338 

Model 2, respectively) for each attribute are reported as follows (see Table 1 for annotation): 339 

𝑤𝑏𝑛𝑘,   𝑚𝑜𝑑𝑒𝑙1 = 5.36 𝑄𝑚𝑓
0.29 𝐷𝐴0.18 𝐴𝐼0.31 𝐷500.03 𝐴𝑔𝑟−0.02 𝑆𝐼−0.08  (1a) 

𝑤𝑏𝑛𝑘,   𝑚𝑜𝑑𝑒𝑙2 = 11.58  𝑄𝑚𝑓
0.35𝐸𝑉𝐼𝑓𝑎

−0.27 𝑁𝐷0.03𝐴𝐼0.17 𝐹𝑟−0.02  (1b) 

𝑑𝑏𝑛𝑘,   𝑚𝑜𝑑𝑒𝑙1 = 3.53 𝑄𝑏𝑛𝑘
0.31𝑃𝐷−0.02𝑍−0.09𝑆−0.03𝐹𝑟−0.03𝐴𝑔0.02𝑆𝑖−0.17𝑆𝑎−0.15  (1c) 

𝑑𝑏𝑛𝑘,   𝑚𝑜𝑑𝑒𝑙2 = 1.76 𝐸𝑉𝐼𝑤𝑖
−0.13 𝐷𝐴0.19 𝐴𝐼0.28𝑍−0.08𝑆−0.04𝐹𝑟−0.02𝑆𝑖−0.09𝑆𝑎−0.18  (1d) 
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𝑤𝑚𝑒𝑎𝑛,   𝑚𝑜𝑑𝑒𝑙1 = 5.81 𝑄𝑚𝑓
0.37𝐸𝑉𝐼𝑤𝑖

−0.16𝑁𝐷0.02𝑆𝑂0.49𝐴𝐼0.25𝐷50
0.04𝐷𝑣0.022𝑆𝑖−0.08  (1e) 

𝑤𝑚𝑒𝑎𝑛,   𝑚𝑜𝑑𝑒𝑙2 = 7.76 𝑄𝐸
0.41𝐸𝑉𝐼𝑤𝑖

−0.22𝐴𝐼0.15𝐷𝑣0.03  (1f) 

𝑑𝑚𝑒𝑎𝑛,   𝑚𝑜𝑑𝑒𝑙1 = 5.48 𝑄𝑚𝑓
0.28𝑃𝐷−0.02𝑍−0.11𝑆−0.02𝐹𝑟−0.03𝑆𝑖−0.21𝑆𝑎−0.15  (1g) 

𝑑𝑚𝑒𝑎𝑛,   𝑚𝑜𝑑𝑒𝑙2 = 7.41 𝑄𝐸
0.24𝑁𝐷0.04𝑃𝐷−0.02 𝑆𝑂−0.28𝑍−0.10𝑆−0.02𝐹𝑟−0.04𝑆𝑖−0.19𝑆𝑎−0.14  (1h) 

Both tiers of models adeptly captured the central tendencies of the data under both 340 

bankfull and mean-flow conditions, as illustrated in Figure 5 and outlined in detail in Table 4. 341 

However, it is noteworthy that the second tier of models demonstrates slightly better 342 

performance than the first. Similarly, both models exhibit an enhanced capability to predict 343 

maximum values accurately. However, the trend differs from that observed for central 344 

tendencies. In bankfull conditions, Model 1 outperforms Model 2. However, under mean-flow 345 

conditions, Model 2 performs better than Model 1.  346 
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Figure 5. Scatter and violin plots of observations against predictions obtained by the first and second tiers 347 

of models (Model 1 (HYDRoSWOT discharge) and Model 2 (NHDplusV2.1 discharge), respectively)) 348 

using the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test dataset to estimate 349 

bankfull width, bankfull depth, mean-flow width, and mean-flow depth. 350 

Table 4. Summary of observation and predicted values ranges, and bias in percent (in parenthesis) 351 

obtained by the first and second tiers of models (Model 1 (HYDRoSWOT discharge) and Model 2 352 

(NHDplusV2.1 discharge), respectively)) using the eXtreme Gradient Boosting Regression (XGBR) 353 

algorithm on the test dataset to estimate bankfull width, bankfull depth, mean-flow width, and mean-flow 354 

depth. 355 

Attribute 
Observation Model 1 Model 2 

Min Max Mean Min Max Mean Min Max Mean 

Bankfull 

Width (m) 
5.2 987.6 61.6 

7.7 

(46.3%) 

992.1 

(0.5%) 

58.2 

(-5.6%) 

12.7 

(142.0%) 

1009.9 

(2.3%) 

60.8 

(-1.3%) 

Bankfull 

Depth (m) 
0.3 14.7 2.4 

0.6 

(88.2%) 

14.6 

(-0.9%) 

2.5 

(2.6%) 

0.9 

(186.9%) 

15.0 

(1.8%) 

2.4 

(0.4%) 
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Mean-flow 

Width (m) 
4.7 957.1 53.4 

6.9 

(47.0%) 

965.1 

(0.8%) 

50.8 

(-4.9%) 

8.6 

(81.3%) 

952.3 

(-0.5%) 

53.7 

(0.7%) 

Mean-flow 

Depth (m) 
0.2 12.8 1.5 

0.4 

(118.0%) 

13.8 

(8.0%) 

1.5 

(5.6%) 

0.5 

(155.7%) 

12.5 

(-2.3%) 

1.5 

(5.5%) 
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 Despite effectively estimating central tendencies and maximum values, both models 356 

demonstrate limitations in accurately predicting minimum values. The first tier of models 357 

displays biases of 46.3% for bankfull width, 88.2% for bankfull depth, 47% for mean-flow 358 

width, and 118% for mean-flow depth. The second tier of models yielded even more significant 359 

biases, with values increasing to 142%, 186.9%, 81.3%, and 155.7%, respectively. These 360 

findings underscore that while XGBR effectively handles non-linear relationships, it might 361 

encounter challenges when dealing with small values that deviate significantly from the general 362 

trends in most of the data. This highlights the importance of understanding the specific 363 

characteristics of the data and considering potential model limitations when relying on the 364 

XGBR to make predictions. 365 

Feature importance analysis (Figure 6) shows that discharge (Qbnk, Qmf, and QE) plays the 366 

most significant role in predicting the channel geometry parameters. If discharge is removed 367 

from the feature sets used for developing models, the loss function, a mean squared error for the 368 

XGBR algorithm, will increase significantly. Furthermore, the importance of discharge features 369 

is higher for the first tier of models. For instance, in predicting bankfull width using the first tier 370 

of models, the significance of bankfull discharge (Qbnk) is calculated at 55.33%. In contrast, in 371 

the second tier of models, the importance of the flow discharge feature (QE) decreases to 372 

46.75%. This discrepancy in the importance of discharge attributes between the two models 373 

stems from the specific attributes used to develop each tier. For the first tier, Qbnk and Qmf are 374 

used, derived from the ADCP (HYDRoSWOT) measurements. In contrast, the NHDplusV2.1-375 

derived discharge (QE) attribute is used in the second tier of models.  376 
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 377 

Figure 6. Results of the Mean Decrease in Impurity (MDI) analyses were obtained by applying developed 378 

first and second tiers of models (Model 1 (HYDRoSWOT discharge) and Model 2 (NHDplusV2.1 379 

discharge), respectively)) using the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test 380 

dataset to estimate bankfull width, bankfull depth, mean-flow width, and mean-flow depth. 381 

The second and third most significant features vary across different models and 382 

attributes. Notably, drainage area (DA), aridity index (AI), stream order (SO), minimum elevation 383 

(Z), catchment average percentage of sand (Sa), and enhanced vegetation index (EVI) emerge as 384 

the second and third most influential features for different models. The contribution of these 385 

parameters can be explained by considering the fundamental principles of river hydrology and 386 

geomorphology and the spatial dynamics of channel characteristics from headwaters to river 387 

mouths.  388 

Higher elevations are often associated with steeper slopes, fostering more energetic flows 389 

contributing to channel erosion and sediment transport. The composition of bed materials, like 390 
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the catchment-averaged percentage of sand, directly influences erosion and sediment transport. 391 

This factor contributes to the dynamics of channel morphology and sedimentation patterns. 392 

Furthermore, upstream river areas typically have more natural and intact vegetation cover, as 393 

they are generally less affected by human activities like agriculture or urbanization. This 394 

vegetation cover can influence sediment transport rates, acting as a stabilizing factor. The 395 

combination of channel elevation, climate features, bed-material composition, and vegetation 396 

cover highlights the complex interplay between natural forces and human activities that shape 397 

river systems' hydrological and morphological aspects along their course, resulting in substantial 398 

modifications to river channel geometry. 399 

Although the first tier of models exhibits better accuracy, their applicability is restricted 400 

to USGS gage sites due to the requirement for Qbnk and Qmf, which is only available for some 401 

streams in the CONUS. Consequently, the second tier of models, developed using QE derived 402 

from NHDPlusV2.1 and through a combined approach that incorporates both MLR and XGBR, 403 

are chosen as the final model to predict bankfull width, bankfull depth, mean-flow width, and 404 

mean-flow depth (Figure 7). Maps (Figure 7) are provided for reaches/streams with drainage 405 

areas greater than 100 km² to enhance visualization. However, the final predicted dataset 406 

resulting from this research encompasses values of predicted width and depth under both mean-407 

flow and bankfull conditions for 2,642,259 reaches in NHDPlusV2.1. 408 
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(a) 

   

(b) (c) (d) 

Figure 7. Maps of predicted values of (a) bankfull width, (b) bankfull depth, (c) mean-flow width, and 409 

(d) mean-flow depth over CONtiguous United States (CONUS) for reaches/streams in the National 410 

Hydrography Dataset Plus Version 2.1 (NHDplusv2.1) with drainage area greater than 100 km2. 411 

3.2. Independent Evaluations 412 

3.2.1. Mean-flow Condition 413 

The NHDplusV2.1 reach-scale channel geometry estimation (using the XGBR-MLR 414 

coupling) compared against data derived from bathymetry surveys (eHydro database) shows R
2
 415 

=0.32 for depth and R
2
 =0.84 for width (Figure 8). 416 

 

Figure 8. Scatter and violin plots of observations obtained by independent datasets (eHydro surveys) 417 

against predictions derived from the second tier of models (Model 2 (NHDplusV2.1 discharge)), utilizing 418 

a hybrid approach combing eXtreme Gradient Boosting Regression (XGBR) and Multi-Linear Regression 419 

(MLR) algorithms, for the mean-flow condition. 420 

The less accurate results in the mean-flow condition can be attributed to several factors. 421 

First, eHydro surveys typically focus on the middle of the stream, which is accessible to 422 

navigable boats. This leads to a lack of coverage towards the banks and limits the surveys to 423 
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large channels, which creates a bias toward larger stream orders (between 4 and 9). Second, the 424 

spatial distribution of survey locations is concentrated predominantly east of the Mississippi 425 

River (Figure S2). Third, the surveyed lengths may not align with the corresponding 426 

NHDPlusV2.1 reach. Consequently, the extracted values from eHydro for a reach may only 427 

represent a portion of an NHDPlusV2.1 reach. Fourth, most surveys were conducted from 2017 428 

to 2023, whereas the predictive models are based on data recorded until 2014. This up to nine-429 

year difference may introduce a bias in the results, as the nature of rivers and their surrounding 430 

environments, which can influence river geometry, undergo substantial changes over time. Fifth, 431 

the surveys have not consistently been conducted during mean-flow conditions, potentially 432 

resulting in extracted values that do not accurately represent the channel geometry attributes at 433 

mean-flow conditions. 434 

3.2.2. Bankfull Condition 435 

The evaluation of NHDplusV2.1 reach-scale bankfull channel geometry estimation 436 

(implemented with the XGBR-MLR coupling) against data gathered from at-a-station bankfull 437 

observations at 11 diverse sources (Check Table 3) yielded a R
2
 of 0.37 for depth and a R

2
 of 438 

0.65 for width (Figure 9). 439 

 

(a) 
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(b) 

Figure  9. Scatter and violin plots of observations obtained by independent datasets (from 11 different 440 

sources) against (a) predictions obtained from applying the second tier of models (Model 2 441 

(NHDplusV2.1 discharge)), utilizing a hybrid approach combing eXtreme Gradient Boosting Regression 442 

(XGBR) and Multi-Linear Regression (MLR) algorithms, for bankfull condition (b) predictions obtained 443 

by applying Regional Hydraulic Geometry Curves (RHGC) model. 444 

The results for bankfull independent evaluation fall short of achieving very high 445 

accuracy. One contributing factor is that the independent evaluation dataset spans from 2000 to 446 

2010. In contrast, the models were developed using measurements up to 2014 and reach and 447 

catchment attributes from 2011 to 2012. Additionally, discrepancies in the definition of bankfull 448 

condition may exist compared to our considerations. Also, the predicted values of bankfull 449 

attributes are reach-averaged while those considered observations come from at-a-station 450 

measurements, which are singular points rather than reach-averaged. Moreover, the 451 

observational dataset exclusively consists of smaller rivers, with a maximum width and depth of 452 

68.99 m and 4.39 m, respectively. This falls within a range where we understand that the 453 

developed model may not offer precise predictions. 454 

A comparison between Figure 9 (a) and Figure 9 (b) reveals a decrease in R
2
 values for 455 

both width and depth, with width decreasing from 0.65 to 0.50 and depth decreasing from 0.37 to 456 

0.21. This illustrates that the developed models demonstrate greater accuracy than the widely 457 

used RHGC method for predicting bankfull width and depth.  458 

4. Conclusions 459 
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This research focuses on developing more accurate models for predicting channel width 460 

and depth under bankfull and mean-flow conditions. Flow discharge features (Qbnk, Qmf, and QE) 461 

emerge as the most significant parameters in the models developed, aligning with foundational 462 

river hydraulics principles that link flow discharge to the channel cross-sectional area. The 463 

primary models, incorporating ADCP-measured flow discharge features (Qbnk and Qmf), 464 

extracted from the HYDRoSWOT observational dataset through rigorous pre-processing, 465 

outperform secondary models that rely on derived mean annual flow from gage adjustment (QE) 466 

extracted from the NHDPlusV2.1 dataset. Additional hydraulic and catchment attributes beyond 467 

discharge and drainage area, such as elevation (Z), stream order (SO), and Aridity Index (AI), 468 

were shown to contribute significantly to the model’s performance. The significant influence of 469 

these attributes underscores the complexity of river geometry spatial dynamics, affected by 470 

factors such as land cover and climate characteristics. 471 

The XGBR algorithm stands out for its power in predicting attributes, showcasing 472 

superior accuracy, adeptness in handling non-linearity, and independence from data 473 

preprocessing. However, limitations arise when applying XGBR to the NHDPlusV2.1 reaches, 474 

with negative values returned for reaches beyond the training range. Consequently, a novel 475 

approach is proposed—a combination of MLR and XGBR as the final model—to address this 476 

limitation and enhance overall predictive capabilities.  477 

An independent evaluation analysis was conducted to quantify the final model’s 478 

predictive accuracy against datasets not associated with the assessed training and testing 479 

(HYDRoSWOT). By comparing the mean-flow geometry estimation with the reach-averaged 480 

channel geometry from eHydro surveys, we can assess how realistic our model (NHDplusV2.1) 481 

is when applied to reach-averaged data. The evaluation was challenging due to the limited 482 

quality of the datasets, which led to less accurate results. However, under bankfull conditions, 483 

the developed models performed better than the RHGC method, indicating improved prediction 484 

accuracy. Furthermore, width prediction consistently proves more accurate across all evaluations 485 

than depth. This discrepancy is attributed to the higher quality of the dataset used for width 486 

model development, as measuring river width is less controversial and complex than measuring 487 

river depth. 488 
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The outcomes of the applied developed models on NHDPlusV2.1 reaches are presented 489 

as a dataset and four maps. These data and maps are valuable resources for water-related experts, 490 

enabling further investigations to gain a deeper understanding of river channel evolution. These 491 

insights can significantly impact the development of water-related and river studies, including 492 

flood inundation mapping and modeling, river channel geomorphology, ecological 493 

investigations, and biological studies.  494 
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